Training a model requires various parameters, depending on the model type. Here we present examples of regression, time series, and OpenAI models.

Here are some useful links:

Regression Model

Let’s look at an example of how to create and train a simple regression model, and then, use it for making predictions.

// Defining training options
const regressionTrainingOptions = {
  select: 'SELECT * FROM demo_data.home_rentals',
  integration: 'example_db'
};

try {

  // Creating and training a model
  // The returned promise resolves when the model is created, NOT when training is actually complete
  let homeRentalPriceModel = await MindsDB.Models.trainModel(
    'home_rentals_model',
    'rental_price',
    'mindsdb',
    regressionTrainingOptions);
  
  console.log('created a model');

  // Waiting for the training to be complete
  while (homeRentalPriceModel.status !== 'complete' && homeRentalPriceModel.status !== 'error') {
    homeRentalPriceModel = await MindsDB.Models.getModel('home_rentals_model', 'mindsdb');
  }
  
  // Checking model's status
  console.log('Model status: ' + homeRentalPriceModel.status);

  // Defining query options
  const queryOptions = {
    where: [
      'sqft = 823',
      'location = "good"',
      'neighborhood = "downtown"',
      'days_on_market = 10'
    ]
  }

  // Querying for a single prediction
  const rentalPricePrediction = await homeRentalPriceModel.query(queryOptions);
  console.log('Predicted value:');
  console.log(rentalPricePrediction.value);
  console.log('Prediction insights:');
  console.log(rentalPricePrediction.explain);
  console.log('Input data:');
  console.log(rentalPricePrediction.data);
  
} catch (error) {
  // Something went wrong training or querying
  console.log(error);
}

Time Series Model

As time series models require more parameters, let’s go over an example of how to create and train a time series model, and then, use it for making batch predictions.

// Defining training options
const timeSeriesTrainingOptions = {
  integration: 'example_db',
  select: 'SELECT * FROM demo_data.house_sales',
  orderBy: 'saledate',
  groupBy: 'bedrooms',
  window: 8,
  horizon: 4
}

try {

  // Creating and training a model
  let houseSalesForecastModel = await MindsDB.Models.trainModel(
    'house_sales_model',
    'ma',
    'mindsdb',
    timeSeriesTrainingOptions);
    
  console.log('created a model');

  // Waiting for the training to be complete
  while (houseSalesForecastModel.status !== 'complete' && houseSalesForecastModel.status !== 'error') {
    houseSalesForecastModel = await MindsDB.Models.getModel('house_sales_model', 'mindsdb');
  }

  // Checking model's status
  console.log('Model status: ' + houseSalesForecastModel.status);
  
  // Describing a model
  const modelDescription = await houseSalesForecastModel.describe();
  console.log('Model description:');
  console.log(modelDescription);

  // Defining query options
  const queryOptions = {
    // Join model to this data source
    join: 'example_db.demo_data.house_sales',
    // When using batch queries, the 't' alias is used for the joined data source ('t' is short for training/test)
    // The 'm' alias is used for the trained model to be queried
    where: ['t.saledate > LATEST', 't.bedrooms = 2'],
    limit: 4
  }
  
  // Querying for batch predictions
  const rentalPriceForecasts = await houseSalesForecastModel.batchQuery(queryOptions);
  console.log('Batch predictions:');
  rentalPriceForecasts.forEach(f => {
    console.log(f.value);
    console.log(f.explain);
    console.log(f.data);
  })
  
} catch (error) {
  // Something went wrong training or predicting.
  console.log(error);
}

OpenAI Model

Here is how to create and deploy an OpenAI model from JavaScript code:

// Defining training options
const trainingOptions = {
  using: {engine: 'openai', prompt_template: 'describe the sentiment of the reviews strictly as "positive", "neutral", or "negative". "I love the product":positive "It is a scam":negative "{{review}}.":'}
};

try {

  // Creating and training a model
  let openai_js = await MindsDB.Models.trainModel(
    'openai_js',
    'sentiment',
    'mindsdb',
    trainingOptions);
  
  console.log('created a model');

  // Waiting for the training to be complete
  while (openai_js.status !== 'complete' && openai_js.status !== 'error') {
    openai_js = await MindsDB.Models.getModel('openai_js', 'mindsdb');
  }
  
  // Checking model's status
  console.log('Model status: ' + openai_js.status);

  // Defining query options
  const queryOptions = {
    where: [
      'review = \'It is ok.\''
    ]
  }

  // Querying for a single prediction
  openai_js = await openai_js.query(queryOptions);
  console.log('Predicted value:');
  console.log(openai_js.value);
  console.log('Prediction insights:');
  console.log(openai_js.explain);
  console.log('Input data:');
  console.log(openai_js.data);

} catch (error) {
  // Something went wrong training or querying
  console.log(error);
}